The quest for validated simulations

Jorge Torres

Center for Cosmology and AstroParticle Physics (CCAPP) and Department of Physics
The Ohio State University

Limitations: no data..yet

- Neutrino flux ($E > 10^{17}$ eV) is very small: $< 1 \, \mathrm{km}^{-2} \mathrm{y}^{-1}$
- Limited also by ignorance of UHE world: neutrino-nucleon cross section, for example.
- Field is young. Other areas have a plethora of MC softwares.

Figure: Katz et al., 2011

Figure: Bustamante & Connolly, 2017

Can we really validate our simulations?

Can we really validate our simulations?

While we wait to detect a real neutrino...

Non-physics (technical validation)

- The canonical debugging.
 - Correct filenames, outputsprecision
- State-of-the-art packages: numpy, astropy, etc.
- Conventions

Physics

- Make sure that we're using validated data/physics:
 - Cross section values
 - Ice models
 - Askaryan models
- Check against new/legacy code
- Add features to make simulation more realistic.

While we wait to detect a real neutrino...

Non-physics (technical validation)

- The canonical debugging.
 - Correct filenames, outputsprecision
- State-of-the-art packages: numpy, astropy, etc.
- Conventions

Physics

- Make sure that we're using validated data/physics:
 - Cross section values
 - Ice models
 - Askaryan models
- Check against new/legacy code
- Add features to make simulation more realistic.

Structure of the MC simulations

Event generation:

- ▶ Neutrino flux→birth (E, \vec{p} , flavor)
- propagation
- interaction
- shower development
- Signal generation: Askaryan emission
- Signal propagation:
 - attenuation length
 - optical effects: diffraction, birefringence, etc.
- Detector simulation
 - Antenna effective height
 - Flectric chain

Figure: Modified from NuRadioMC paper.

Exercise in autumn, 2018: comparison

- Comparison of AraSim, PyREx and NuRadioMC:
- Simulated same geometry, configuration, parameters.
 - 4 surface LPDAs
 - 4 surface vpol bicones
 - 12 in-ice vpol bicones

Figure: Top view

Figure: Side view

Comparison of antenna models

- Models from different simulation softwares: XFDTD and WIPL-D.
- Systematics were there, but tried to minimize discrepancies
- Realized that we were using different quantities for h_{eff} (gain vs. realized gain) and fixed it.

Figure: Before

Comparison of signal properties and propagation

- Simulated identical simple configuration under same condition/parameters.
- Event by event comparison of same triggered events:
 - signal amplitude at different locations.
 - launch and receiving angle
 - signal polarization

Results:

- All 3 sims agree on ray tracing and signal polarization.
- NuRadioMC and Pyrex agree on signal time traces and spectra up to a factor of 2 if using same Askaryan models.

Figure: In green: locations where the signal amplitude was checked

Comparison of effective volumes

- The final step was a comparison of effective volumes for the same configuration.
- Disagreement of simulations.
 PyREx discrepancy is energy dependent.
- Differences are maybe caused by Askaryan modules.

What can we add to make simulations more realistic?

Noise profile

- Thermal noise samples were taken from ARA data.
- Noise was characterized by fitting Rayleigh distributions to spectrum profiles for different frequencies.
- Next step: include real thresholds from stations.

Figure: Comparison of RMS of data and simulation. Differences are due to anthropogenic noise and CW signals.

What else?

- Add calibration pulsers to the simulation?
- Tau regeneration integration?
- Your contribbution...

Conclusions & discussion (and Jorge's naive questions)

- Validation of simulations is an interesting problem.
- Let's talk about having standard/default models and quantities for the detectors:
 - Ice models
 - Antenna models
 - Askaryan models
- Would be a great exercise to estimate systematic errors from different models.
- Making simulations more realistic, e.g., to include features such as real noise, LPM effect, etc. helps with accuracy.
- Comparing simulations, either old or new, between them is important.
- Need modular simulations so the comparison is easier.
- We can benefit of synergy between simulators.

Backup Slides

Detailed simulation paremeters for comparison

- Antenna front-ends consist of a 2nd-order high-pass filter at 80 MHz and 10th-order low-pass filter at 500 MHz
- Simulate without noise, but for triggers assume a 300 K noise temperature (9.3 mV noise sigma)
- High/low triggers on Vpols and LPDAs with a window of 5 ns.
- Phased array simulated by a proxy antenna at the center with a 2σ absolute voltage threshold